

Performance Analysis of Gigabit Ethernet Shared-Memory Switch with Embedded-DRAM

Se-Joong Lee Dec. 18, 2000

Semiconductor System Lab

Outline

- Motivation
- Background
- Previous Works
- Modeling of Shared-Memory Switch
- Performance Analysis with General Policy
- Performance Analysis with Dedicated Policy
- Conclusion

Motivation

- Multimedia data (data/voice/video) is increasing network traffic.
- Network switch is required to have large buffer due to large packet size (1.5kbyte) and bursty traffic pattern.
- DRAM is being used as packet buffers.

Background

- Function of Switch
 - Routing
 - Buffering (Output conflict)
- Ideal Switch
 - Non-blocking
 - Work-conserving
- Performance Index of Switches
 - Throughput
 - Average Waiting Time
 - Packet Loss Probability

Background

• Shared-Memory Switch Architecture

Hybrid Shared and Dedicated Output Buffer Switch

Background

- Input Traffic Patterns
 - Independent uniform traffic pattern (Bernouilli process)
 - The requested output port for a packet is uniformly chosen among all output ports, independently for all arriving packets.
 - Bursty traffic pattern
 - Packets in a burst destined to the same output port.

Previous Works

- Queueing Theory
 - Mark J. Karol, "Input vs. output queueing on a space-division packet switch," 1987.
 - Michael G. Hluchyj,
 "Queueing in highperformance packet switching" 1988.

Previous Works

- Non-Ideal Switching Fabric
 - Achille Pattavina,
 "Analysis of input and output queueing for nonblocking ATM switches," 1993.
 - I.I. Makhamreh, "Analysis of an output buffered ATM switch with speed-up constraints," 1995.

8

Previous Works

- Slow Buffer
 - Sundar Iyer, "Analysis of a packet switch with memories running slower than the line-rate," 2000.

Modeling of Shared-Memory Switch

Reference Architecture

Hybrid Shared and Dedicated Output Buffer Switch

Semiconductor System Lab

10

• Feature Selection

	Line-Rate	1Gbps
Packet Offering	No. of Port	8
	Packet Size	46byte ~ 1500byte
Memory	Clock	125MHz
	I/O bitwidth	128bit
	Capacity	2Mbit
	t _{RC}	32ns(4cycle)
	Burst Length	4

Semiconductor System Lab 12

Refresh Consideration

Semiconductor System Lab 14

Write Operation of Embedded DRAM Switch

Read Operation of Embedded DRAM Switch

Status				
?	?	?	?	
?	?	?	?	
Q0	Q4	Q4	Q6	
0	0	0	0	
	?	!	- ?	
?	?	?	?	
? ? ?	? ? ?	???	? ? ?	

Memorv

Memory Status

Output FIFO

Semiconductor System Lab 16

P.A. with General Policy

- Simulation Environment
 - Packet Arrival Process
 - Bernoulli process with parameter p (offered load)
 - Packet Size Distribution
 - Poisson distribution
 - Mean packet size = 616byte (from "IEEE workstation mix" distribution, 1996)
 - Packet Chopping
 - Divided into 1~94 cells

• Factors Affecting Memory Access Pattern

• Idle Address Issuing Policy

• Service Port Selection Policy

Offered Load versus Throughput

Effective Burst Count for Burst Read

- Conclusion about General Policy
 - FIFO is inadequate for Idle Address Buffer
 - Address reordering is required.
 - Dedicated service output port selection policy is required.
 - Effective Burst Read count must be increased.

P.A. with Dedicated Address Issuing

- Dedicated Read Address Issuing
 - Burst read-conserving : A read operation is burst read-conserving if all of the output ports that corresponds to the destination of the retrieved data are serviced.
 - If a read operation is burst read-conserving, the read operation is the best choice to obtain maximum output port utilization, i.e. maximum throughput.

Burst read-conserving condition

Memory Space

Dedicated Output Port Selection

Memory Space

- Dedicated Write Address Issuing
 - Idle Address List

Throughput versus Offered Load

Throughput Sensitivity for Input Pattern

• Effective Burst Count

P.A. with Dedicated Service Port Selection

• Burst Port Selection Policy

P.A. with Dedicated Service Port Selection (Cont'd)

Throughput versus Offered Load

P.A. with Dedicated Service Port Selection (Cont'd)

Throughput Sensitivity for Input Pattern

Semiconductor System Lab 36

P.A. with Dedicated Service Port Selection (Cont'd)

Effective Burst Count

Conclusion

• Summary of Performance Analysis

Conclusion (Cont'd)

- With the dedicated address issuing/service port selection policies, the throughput of the embedded-DRAM shared-memory switch showed <u>15%</u> <u>degradation</u> compared with that of SRAM switch.
- In the condition of <u>large packet size</u> (1500byte), the throughput degradation was <u>5%.</u>
- If the switch is applied to the <u>bursty traffic networks</u> like Gigabit Ethernet, the performance degradation will be negligible.

